
SIGMATEK

Motion Control System

Contents

Motion Control System	3
Optimal for any Application	4
DIAS Drives Series 100	8
DIAS Drives Series 300	11
Servo Motors	13
Planetary Gears	14
Drive Layout	16
Real-Time Ethernet Communication with VARAN	17
Efficient Engineering with LASAL & LASAL MOTION	18
Highlights	23

Flexible and efficient drive solutions

Motion Control System

Dynamic. Precise. Economic.

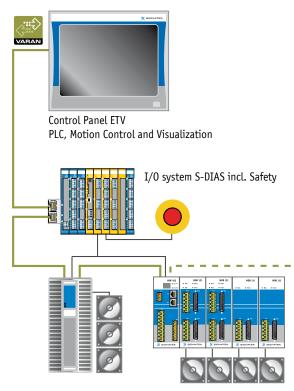
Modern machines and plants demand more efficient drive technology with greater flexibility, higher precision and reliability. With the Motion Control System from SIGMATEK, a high performance, user-friendly and economic complete solution is provided that offers you a great deal of freedom when implementing your machine and plant concepts.

Motors, drives, gears and software interact optimally and are fully integrated into the SIGMATEK

control system. Even complex Motion Control tasks can therefore be solved simply and flexibly. The DIAS Drives of the 100 and 300 series, servo motors and planetary gears can be matched to these special requirements. In combination with the engineering tool LASAL MOTION, highly dynamic, synchronized and reliable servo applications are provided from one source. The fast and nearly jitter-free system communication is provided by the Ethernet-based VARAN bus.

Drives, motors and gears interact perfectly

Optimal for any Application


With the DIAS Drives, the right system is available for any application. Thanks to the minimal cycle times, both series have excellent servo performance. The functions were limited to current, rotation speed and position control to avoid unnecessary overhead. An optimal price/performance ratio is therefore achieved.

Servo, linear, torque and asynchronous motors can be operated and all conventional

feedback systems used. The parameter and configuration data of the drives are stored centrally in the control. The initial start-up, service and exchange are thereby simplified.

All drives have the most important Safety functions in compliance with SIL 3 according to EN 61508 and PL e according to ISO 13849 and can be easily integrated into the security concept of the machine.

Integrated control architecture with real-time Ethernet

Servo drives with integrated Safety

All DIAS servo drives are fully integrated into the automation system. Motion Control, PLC, Safety and Visualization are combined in a central control system. Simple programming and an organized structure of the application software can therefore be achieved. The control provides extensive motion control functions. The drive tasks are reduced and for the user, the operation is simplified.

All drive parameters and configuration data are stored centrally in the control and automatically reloaded when a servo drive is exchanged. This modern system structure is made possible through the hard real-time Ethernet bus VARAN, which is used for communication between the drive and control with the shortest cycle times. Cross traffic between the axes in such a system architecture is not needed.

Modular multi-axis system: DIAS Drives Series 100

DIAS Drive 100 is a modular servo drive system that is designed for highly dynamic machines in the mid and lower power range. It convinces with an exceptionally compact form and optimized power loss. Per component group, up to 8 axes are possible and that with an installation space of only 300 mm \times 155 mm \times 152 mm (W \times H \times D).

Two power modules are available to choose from, as well as axis modules for one or two servo drives in a power range of up to 3 kW. Depending on the power module and motor type used, the system must be operated as 1-phase, 230 VAC or 3-phase 400-480 VAC. The modules can be mounted onto the carrier with simple snap-on technology. The

assembly and installation are thereby significantly reduced. The integration of brake resistance and a line filter contribute to maintaining small space requirements.

Compact multi-axis system: DIAS Drives Series 300

The DIAS Drives of the 300 series also score with their highly compact form: Up to three drives are integrated into a unit and thereby save space in the control cabinet - 158 mm x 378 mm x 240 mm (W x H x D). An optimal price/performance ratio, especially for robot and handling systems, is thereby achieved. The drive system is designed for multiaxis applications in a power range from 8 to 14 kW.

All drives have an individually adjustable and scalable output stage concept for servo motors. High efficiency, reduced power loss and an optimized cooling concept are further arguments for using the DIAS Drives 300. In addition to the standard model with a fan unit, the DIAS Drives 310 is also available in an even more compact Cold Plate version.

Power range: no limits

The DIAS Drive Series 500 is currently in preparation. This series will be designed for a power range from 11 to 80 kW. With 5 sizes and various cooling concepts, the user can flexibly tune the drive system according to performance and features.

DIAS Drive 310 Cold Plate

Stepper motors compactly controlled: VST 011 and 012

The VST 011 and VST 012 are ultra-light compact function modules used to control 2-phase stepper motors with a rated voltage of 18 to 70 VDC dimensions: 26 mm x 151 mm x 121 mm (W x H x D). Micro-stepping (32 steps) is supported. For the VST 011, a maximum continuous current of 5 A per motor is possible and 10 A continuous current for the VST 012. Large stepper motors with high torque can therefore be operated. The standard configuration also includes an incremental encoder interface. In addition, 4 digital in- and outputs (24 V) each are integrated, which can be used according to the application requirements. Real-time data exchange for the rotation speed and position control, as well as parameter setting is performed over the VARAN bus.

Synchronous servo motors increase energy efficiency

With the use of servo motors, the energy efficiency of the application can be increased. The synchronous servo motors of the AKM series are compact power packages for highly dynamic motion tasks. They convince with high packaging density, optimal overloading capability and speed dynamics in a very compact form. The brushless, rotary current motors with three-phase windings have permanent magnets in the rotor made of Neodymium magnet material. Through the low inertial torque, they are highly dynamic.

Different application areas require different motors: A broad palette in 8 sizes with rated torques from 0.17 to 105 Nm and peak torques up to 668 Nm is available to choose from.

Accelerate mass inertia with planetary gears

The selection of servo motors is expanded with compact and low backlash planetary gears from the series P and PE/AE. Fine tuning of the gear ratio ensures that the optimal combination of power, speed and torque is achieved. The smooth running and overload-capable motor gear units perform their job with the highest position accuracy, dynamics and efficiency.

DIAS Drives Series 100

Power modules MDP 101-1 and MDP 102-1

The power modules are the head station of each DIAS Drive axis system. Depending on the power module and motor type used, the system must be operated as 1-phase, 230 VAC or 3-phase 400-480 VAC. The MDP 101-1 and MDP 102-1, are the communication interface for the control and responsible for the bus communication with connected axis modules. All conventional feedback systems such as Resolver, EnDAT®, Hiperface® and Sin/Cos encoders can be used.

Additional characteristics:

- Real-time Ethernet VARAN interface
- Spline interpolation implemented in addition to position control
- Integrated power filter
- Intermediate circuit is accessible for the coupling of additional devices
- Charging circuit
- Brake resistance
- Safety functions STO "Safe Torque Off" and SS1 "Safe Stop 1" integrated

		MDP 101-1	MDP 102-1
Rated Data			
Input voltage (symmetrically opposing ground)	V _{AC}	3x 230 V _{-10%} - 480 V ^{10%} , 45 - 65 Hz	1 or 3x 115 V $_{^{-10\%}}$ / 1x 230 V $^{10\%}$, 45 - 65 Hz
Max. peak current with activation of the mains contact (limited by inrush circuit)	Α	3	2
Rated power in S1 mode	kVA	3	2
Rated installed power for S1 operation for input voltage (< 400 V / < 230 V)	VA	3 kVA - 7.5 W * (400 - input voltage/V)	2 kVA - 8.7 W * (230 - input voltage/V)
Rated DC-link voltage	V _{DC}	290 - 680	150 - 360
Over voltage threshold of the DC-link voltage	V _{DC}	450 / 800 / 900	450
+24 V auxiliary voltage	V _{DC}	22 - 30	22 - 30
+24 V auxiliary supply power	W	max. 50	max. 50
Max. residual current	mA	30	30
Holding brake supply voltage +24 V-BR	V _{DC}	23 to 26 (depending on selected holding brake type)	23 to 26 (depending on selected holding brake type)
Brake switch			
DC-Link capacitance	μF	135	540
G-VMAINS =230 (rated mains voltage = 230	V)		
Switch-on threshold	V _{DC}	420	420
Switch-off threshold	V _{DC}	400	400
Over voltage protection	V _{DC}	450	450
Peak power of the internal ballast resistance (max. 1 s)	kW	5.3	5.3

		MDP 101-1	MDP 102-1			
G-VMAINS = 400 (rated supply voltage = 400)	V)					
Switch-on threshold	V _{DC}	730	-			
Switch-off threshold	V _{DC}	690	_			
		800				
Over voltage protection	V _{DC}	800	-			
Peak power of the internal ballast resistance (max. 1 s)	kW	21	-			
G-VMAINS = 480 (rated mains voltage = 480)	<i>I</i>)					
Switch-on threshold	V_{DC}	850	-			
Switch-off threshold	V _{DC}	810	-			
Over voltage protection	V _{DC}	900	-			
Peak power of the internal ballast resistance (max. 1 s)	kW	27	-			
Safety Input						
Input voltage between ENABLE_H (+) and ENABLE_L (-)	V	typically 24 V to a	maximum of 30 V			
Signal level between ENABLE_H (+) and ENABLE_L (-)	V	low: ≤ +5, l	high ≥ +15			
Input current	mA	typically 10	mA at 24 V			
Input switching delay times	S	switch-on dela Turn-off delay at le				
Relay output (S1, S2)		N				
Switching power		max. 30 V DC, 42 V AC	, 100 µA to max.0.5 A			
Digital Inputs						
Input voltage Dig_IN1 to Dig_IN8	٧	typically 24 V to a max. of 30 V				
Signal level	V	low: ≤ +5,	high ≥ +15			
Input current	mA	typically 10	mA at 24 V			
Input switching delay times	ms	typical	lly 0.1			
Internal Fuse						
Auxiliary supply voltage +24 V (+24 V - BGND)		electron				
Holding brake supply 24 V-BR (24 V-BR - BGND)		electron				
Ballast resistance		electronic	protection			
Resolver Specifications						
Exciter frequency ferr	kHz	8				
Exciter voltage URef	Ueff	2.				
Number of poles m		2, 4, 6,				
Resolver voltage Usin/cos, max	Ueff	1.	9			
Connector Types						
Safety inputs (X1)		Phoenix FMC	· ·			
Power supply (X2)		Phoenix GMSTB 2	,			
VARAN bus (X3, X4)		RJ				
Digital inputs (X6)		Phoenix FMC1	1.5/12-ST-3.5			
Dimensions						
Height / Width/ Depth with module carrier (without/ with plug)	mm	155 / 60 / 152 (195)				
Weight	kg	1.	2			
Article number						
		09-403-101-1	09-403-102-1			

Axis modules MDD 111-1 and MDD 121-1

Axis modules for 1 or 2 servo drives are available to choose from. The modules are mounted on a module carrier (MDM) using simple snap-on technology. The assembly and installation are thereby significantly reduced. The module carrier is provided for a power module and up to four axis modules.

Additional characteristics:

- Excellent servo performance through the smallest controller cycle times
- Control of servo, linear, torque and asynchronous motors

		MDD 111-1	MDD 121-1
Rated Data			
Rated input voltage of the power module	V _{AC}	230 / 400 / 480	230 / 400 / 480
Max. holding brake current per axis	A DC	1	1
Holding brake voltage drop from the 24 V-BR to the output	V _{DC}	max. 1 (at 1 A stop brake current)	max. 1 (at 1 A stop brake current)
Max. total continuous current of axes 1 and 2 (heat sink) at 230 V	A _{RMS}	-	6
Rated output current of axis 1 (rms +/-3 %) at 230 V	A _{RMS}	6	3, max. 5*
Rated output current of axis 2 (rms +/-3 %) at 230 V	A _{RMS}	-	3
Max. total continuous current of axes 1 and 2 (heat sink) at 400 V/480 V	A _{RMS}	-	4
Rated output current of axis 1 (rms +/-3 %) at 400 V/480 V	A _{RMS}	4	2, max. 3*
Rated output current of axis 2 (rms +/- 3 %) at 400 V/480 V	A _{RMS}	-	2
Max total peak current of axes 1 and 2 at 230 V for maximum 5 s	A _{RMS}	-	18
Peak output current of axis 1 for a max. of 5 s (rms \pm -3 %) at 230 V	A _{RMS}	15	9, max. 15**
Peak output current of axis 2 for a max. of 5 s (rms +/-3 %) at 230 V	A _{RMS}	-	9
Max. total peak current of axis 1 and 2 at 400 V/ 480 V for a max. of 5 s	A _{RMS}	-	12
Peak output current of axis 1 for a max. of 5 s (rms +/- 3 %) at 400V/480 V	A _{RMS}	9	6, max. 9**
Peak output current of axis 2 for a max. of 5 s (rms +/- 3 %) at 400V/480V	A _{RMS}	-	6
Power stage losses (multiply the average current of axis with the factor), without regen losses	W/A_{RMS}	1	0
Output frequency of the power stage	kHz	8	3
Intermediate circuit capacitance	μF	6	0
Connector Types			
Feedback (X12, X22)		D-Sub, 25-ր	oin (female)
Motor (X11, X21)		Phoenix GMSTB 2	.5HCV/ 6-ST-7.62
Dimensions			
Height / Width/ Depth with module carrier (without/ with plug)	mm	155 / 60 /	152 (195)
Weight	kg	1.	.2
Article Number			
		09-404-111-1	09-404-121-1

^{*)} The sum of both continuous currents of the axes is limited to the total continuous current, depending on axis 2

^{**)} The sum of both peak currents of the axes is limited to the total peak current, depending on axis 2

DIAS-Drives Series 300

The SIGMATEK DIAS Drives (SDD) from the 300 series provide excellent servo performance in a compact form without the usual overhead, since the functions were consciously limited to current, speed and position control. All conventional feedback systems such as Resolver, EnDAT, Hiperface and Sin/Cos encoder, can be used.

Additional characteristics:

- Real-time Ethernet VARAN interface
- Auto scaling function
- Reduction of power loss through a PWM process
- Spline interpolation implemented in addition to position control
- Integrated class A power filter
- Intermediate circuit is accessible for the coupling of additional devices
- 1-phase operation possible
- Safety functions STO "Safe Torque Off" and SS1 "Safe Stop 1" integrated

		SDD	SDD	SDD	SDD	SDD
		310	315	335	215	120
Rated Values						
Rated input voltage (symmetrical opposed to ground) maximum 5000 A eff. (L1, L2, L3)	V _{AC}		3x 2	30 V _{-10%} - 480 \ 45 - 65 Hz	J ^{10%} ,	
Max. peak current in starting torque (limited by inrush current)	Α			2.5		
Rated power in S1 mode	kVA			14		
Rated DC-link voltage	V DC			290 - 680		
Over voltage protection threshold of DC-link voltage	V DC			450 - 900		
Auxiliary supply voltage +24 V	V DC			22 - 30		
+24 V auxiliary supply power	W	35	35	35	35	25
Holding brake supply voltage +24 V-BR	V DC			25 - 27		
Max. holding brake current per Axis	A DC			2		
Stop brake voltage drop with +24 V-BR load	V DC		maximum 1 (at	3x 2 A holding	brake current)	
Rated output current for axis 1 (eff. +/- 3 %)	A _{RMS}	10	10	10	10	20
Rated output current for axis 2 (eff. +/- 3 %)	A _{RMS}	10	10	10	-	-
Rated output current for axis 3 (eff. +/- 3 %)	$A_{\scriptscriptstyle RMS}$	10	15	15	15	-
Max. continuous sum current of all axes (heat sink)	A_{RMS}	20	20	20	20	-
Peak output current of axis 1 for a max. of 5 s (eff. +/- 3 %)	$A_{_{RMS}}$	20	20	20	20	40
Peak output current of axis 2 for a max. of 5 s (eff. +/- 3 %)	A_{RMS}	20	20	30	-	-
Peak output current of axis 3 for a max. 5 s (eff. +/- 3 %)	$A_{\scriptscriptstyle RMS}$	20	30	35	30	-
Power stage loss	W/A_{RMS}			10		
Output frequency of the power output stage	kHz	8				
Max. residual current	mA			15		

		SDD 310	SDD 315	SDD 335	SDD 215	SDD 120	
Regen Circuit		310	313	333	213	120	
DC-Link capacitance	μF			700			
Internal regen resistor value	Ω			25			
External regen resistance value	Ω	25 - 50	25	25	25 - 50	25	
Rated power of the internal regen resistor	W			200			
G-VMAINS =230 (rated mains voltage = 230 V)				200			
Start-up limit	V _{DC}			420			
Switch-off level	V _{DC}			400			
Over voltage protection	V _{DC}			450			
Max. Rated power of the external regen resistor	W			750			
Peak power of the internal regen resistor (max. 1 s)	kW			6.5			
G-VMAINS = 400 (rated supply voltage = 400 V)	IX.II			0.5			
Start-up limit	V DC			730			
Switch-off level	V _{DC}			690			
Over voltage protection	V _{DC}			800			
Max. Rated power of the external regen resistor	W			1200			
Peak regen resistance power (max. 1 s)	kW			21			
G-VMAINS = 480 (rated mains voltage = 480 V)	KW			21			
Start-up limit	V _{DC}			850			
Switch-off level	V DC			810			
Over voltage protection	V _{DC}			900			
Max. Rated power of the external regen resistor	W			1500			
Peak regen resistance power (max. 1 s)	kW			27			
Internal Fuse	KW			Li			
24 V auxiliary supply voltage (+24V to BGND)				electronic fus	a		
Holding brake supply 24 V-BR (+24 V-BR to BGND)				electronic fus			
Regen resistance			ele	ectronic protec			
Resolver Specifications				, , , , , , , , , , , , , , , , , , ,			
Exciter frequency ferr	kHz			8			
Exciter voltage URef	Ueff			4			
Number of poles m	-			2, 4, 6,, 32			
Resolver voltage Usin/cos, max	Ueff			2.2			
Connector Types							
Auxiliary supply (X1A)			Combi	con 5, 3-pin, 2	2.5 mm²		
Power supply (X1B)				nbicon 7.62, 8-			
Feedback (X6, X7, X8)				ub, 25-pin (fer	•		
Motor (X3, X4, X5)				nbicon 7.62, 6-	•		
Dimensions with Fan Unit			poo.	,	, , , , , , , , , , , , , , , , , , ,		
Height (with connector) / Width / Depth	mm		378	3 (472) / 158 /	240		
Weight	kg	10					
Dimensions with Cold Plate (only SDD 310-3)	3						
Height (with connector) / Width / Depth	mm		428	(472) / 152 /	121.3		
Weight	kg	428 (472) / 152 / 121.3 6.35					
Article Number	9						
With fan unit		09-501-101-2	09-501-151-2	09-501-351	09-501-152-2	09-501-201-2	
With Cold Plate		09-501-101-3	-	-	-	-	
man cota i tate		07 701 101-3					

Servo Motors AKM

The synchronous servomotors from the AKM series are brushless, rotary current motors with three-phase windings for demanding servo applications. They contain permanent magnets in the rotor made of neodymium magnet material. Through the low inertial torque, the motors are highly dynamic and also have very low cogging. The robust, compact motors with high power density are available in eight sizes and fine graduations, whereby customization is possible. Motor and encoder cable are available in standard lengths of 5 m/10 m/15 m/20 m.

Standard model:

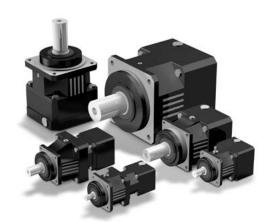
- Smooth wave
- IP65 protection
- 2-pin resolver
- Sensors in the stator windings to monitor temperature
- UL-conforming configuration

Options:

- Parallel key
- Stop brake (AKM 2 8)
- Water-cooled flange
- Shaft ring seal (IP67)
- Rotatable plug
- Various sensor systems

Motor		AKM 1	AKM 2	AKM 3	AKM 4
Rated power	P _n (kW)	0.14 - 0.30	0.28 - 0.94	0.28 - 1.31	0.24 - 1.73
Rated rotation speed	n _n (min ⁻¹)	8000	2000 - 8000	1000 - 8000	1200 - 6000
Motor idle torque	M_{o} (Nm)	0.18 - 0.41	0.48 - 1.42	1.15 - 2.88	1.95 - 6
Rated torque	M _n (Nm)	0.17 - 0.36	0.39 - 1.32	0.91 - 2.64	1.58 - 5.22
Peak torque	$M_{omax}(Nm)$	0.61 - 1.46	1.47 - 4.82	3.88 - 10.22	6.12 - 20.4
Rated current	$I_n(A)$	1.06 - 1.33	1.11 - 3.48	1.07 - 4.37	1.26 - 5.57
Peak current	$I_{max}(A)$	4.6 - 6	5.6 - 17.2	5.5 - 22.5	5.6 - 35.2
Rotor inertial torque	J [kgcm²]	0.017 - 0.045	0.11 - 0.27	0.33 - 0.85	0.81 - 2.7

Motor		AKM 5	AKM 6	AKM 7	AKM 8
Rated power	P _n (kW)	0.55 - 3.87	1.87 - 6.45	3.94 - 7.71	11.9 - 19.8
Rated rotation speed	n _n (min ⁻¹)	1000 - 6000	1000 - 6000	1200 - 3000	1800 - 3000
Motor idle torque	M_{o} (Nm)	4.7 - 14.4	11.9 - 25	29.4 - 53	75 - 180
Rated torque	M _n (Nm)	1.94 - 12.9	5.7 - 22.8	18.2 - 43.5	38 - 105
Peak torque	$M_{omax}(Nm)$	11.6 - 38.4	29.7 - 65.2	78.5 - 143	210 - 668
Rated current	$I_n(A)$	1.96 - 10.18	4.03 - 15.3	7.43 - 16.29	24 - 39
Peak current	$I_{max}(A)$	8.2 - 37.5	13.5 - 62.1	27.9 - 58.6	144 - 201
Rotor inertial torque	J [kgcm²]	3.4 - 12	17 - 40	65 - 120	172 - 495


Planetary Gears

For demanding applications: Series P

The universal planetary gears of the P Series are used in demanding applications, which have high requirements on torque/dynamics, smoothness and precision. The user profits from compact, coaxially constructed drive units.

Highlights:

- Robust full wave
- Acceleration torque from 18 1600 Nm
- Very low backlash: ≤ 3 to ≤ 8 angular minutes
- High torsional stiffness
- Uniform amount of oil, can be used in all mounting positions
- FKM seal ring on the drive, continuous operation without cooling
- Symmetric friction-optimized output bearings (optionally available in amplifier configuration)
- Slanted gearing for perfect smoothness and stability
- Low mass moments of inertia
- Simple and safe motor adaptation in mounting position

Series P gears			P 221	P 222	P 321	P 322	P 421	P 422	
Gear ratio	i		4 - 10	16 - 100	3 - 10	12 - 100	3 - 10	12 - 100	
Rated torque	M2N	[Nm]	12 - 16	12 - 16	30 - 45	30 - 45	50 - 85	50 - 85	
Max. Input speed	n1MAX	DB (min ⁻¹)	4500	4500	3500 - 4500	4000 - 4500	3000 - 4000	3500 - 4500	
Backlash	Λφ2	arcmin	6	8	4	5	4	5	
Max. acceleration torque allowed	M2B	[Nm]	18 - 22	18 - 22	50 - 65	50 - 65	100 - 120	100 - 120	
Efficiency		%	1-stage ≥ 97 %, 2-stage ≥ 95 %						

Series P gears			P 521	P 522	P 721	P 722	P 821	P 822	
Gear ratio	i		3 - 10	12 - 100	3 - 10	12 - 100	3 - 10	12 - 100	
Rated torque	M2N	[Nm]	120 - 210	120 - 210	280 - 440	280 - 440	700 - 1000	700 - 1000	
Max. Input speed	n1MAX	DB (min ⁻¹)	2500 - 3700	3000 - 4000	2200 - 3300	2500 - 3700	1800 - 2800	2200 - 3300	
Backlash	Λφ2	arcmin	3	4	3	4	3	4	
Max. acceleration torque allowed	M2B	[Nm]	200 - 300	200 - 300	500 - 700	500 - 700	1200 - 1600	1200 - 1600	
Efficiency		%	1-stage ≥ 97 %, 2-stage ≥ 95 %						

Economic solution: Series PE and AE

For simple applications, the low-backlash planetary gears of the PE and AE series provide an inexpensive alternative. The multifaceted combination possibilities for motors and gears, as well as fine transmission ratios enable optimal tailoring to customer requirements.

Standard model:

IP64 (PE series), IP65 (AE series), lifetime lubrication, double attachment centering

Options:

Food grease lubrication, low backlash classes, stainless steel motor adapter plates

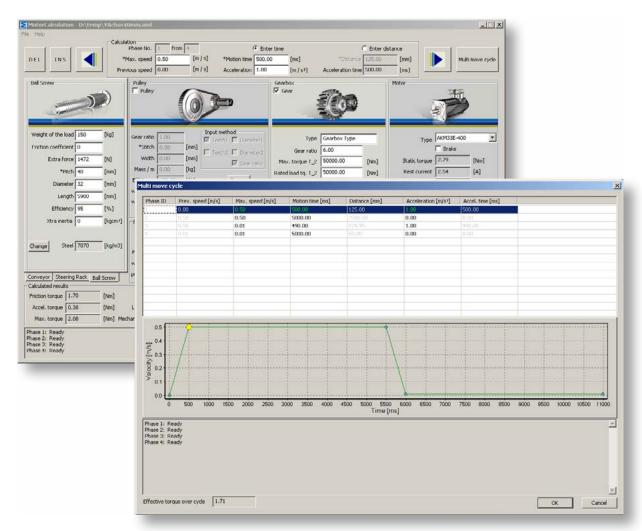
Highlights series PE:

- Inexpensive series with spur gearing
- Geometric 50/70/90/120/155 flange size
- Backlash: ≤ 6 to ≤ 10 angular minutes
- High torsional stiffness
- Low noise

PE series gears			PE 050	PE 070	PE 090	PE 120			
Gear ratio	i			3 -	100				
Rated torque	M2N	[Nm]	9 - 14	26 - 39	65 - 104	150 - 215			
Max. input speed	n1MAX	DB (min ⁻¹)	4500	4000	3600	3000			
Backlash	Λφ2	arcmin	≤ 8 - ≤ 10	≤ 8 - ≤ 10	≤ 6 - ≤ 8	≤ 6 - ≤ 8			
Max. acceleration torque allowed	M2B	[Nm]	13.5 - 21	39 - 58.5	97.5 - 156	225 - 322.5			
Efficiency		%	1-stage≥ 97 %, 2-stage≥ 94 %						

Highlights series AE:

- Basic housing and shafts made of stainless steel
- 7 sizes, from 50 mm to 235 mm
- Backlash: ≤ 8 to ≤ 12 angular minutes
- Straight and angled models
- High torsional stiffness and higher torques
- Low noise


Series AE gears			AE 050	AE 070	AE 090	AE 120	
Gear ratio	i			3 -	100		
Rated torque	M2N	[Nm]	14 - 22	40 - 60	100 - 160	208 - 310	
Max. input speed	n1MAX	DB (min ⁻¹)	5000	5000	4000	4000	
Backlash	Λφ2	arcmin		≤ 8 -	≤ 12		
Max. acceleration torque allowed	M2B	[Nm]	21 - 33	60 - 90	150 - 240	312 - 465	
Efficiency		%	1-stage≥ 97 %, 2-stage≥ 94 %				

LASAL Motor Calculation software

Drive layout made easy

For any application: With an optimized drive concept, the machine and especially the energy efficiency can be increased. Important thereby, are need-based dimensioning and the professional layout of the drives and motors. The all-in-one engineering supports the user with the comfort-

able "LASAL Motor Calculation" software. Based on user-definable speed profiles (speed, acceleration, distance or motion time) and mechanical data (weight, diameter, mass, ratios), the optimal drive can be specified for the respective application.

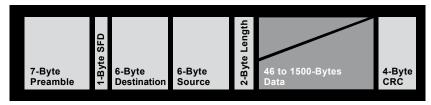
With the LASAL Motion Calculation software, the fitting drive components can be easily defined.

Seamless integration and perfect communication

Real-Time Ethernet VARAN Bus

With the short access times and high synchronicity that can be reached with the real-time Ethernet VARAN, implementing controls for complex tracked profiles with multiple axes in combination with a primary PLC is simple and economic. In addition, a significantly deeper integration of the

drive into the control is achieved with the VARAN bus. Data such as alarms, motor data, etc. can be


processed and visualized in the PLC without time limitations.

Hard Real-time, short cycle times, high synchronicity

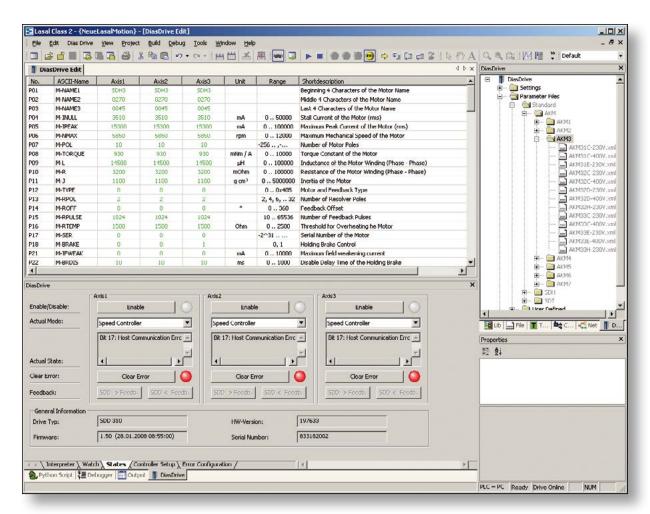
The VARAN bus is ideal for fast machines with a lot of drives, since all access can be synchronized in hard real-time (synchronicity jitter < 100 ns). Through the high data transfer rate and larger bandwidth of the real-time Ethernet communication, it is possible to activate more drives in a shorter time than with current field bus systems.

For data exchange between the PLC and drive (16byte read/write data corresponds to one drive), the VARAN bus needs only 5.05 µs. A significant advantage of VARAN, in comparison to other real-time Ethernet bus systems, is the very small packet size. Instead of the long standard Ethernet frames, the packet length for the VARAN bus uses a maximum of 128 bytes. The probability of corrupting a message is thereby extremely low. If this should occur however, the message is immediately repeated within the same bus cycle.

Standard Ethernet Frame

VARAN Frame

VARAN uses very short data packets. The minimized overhead and small payload guarantee high flexibility and data security.

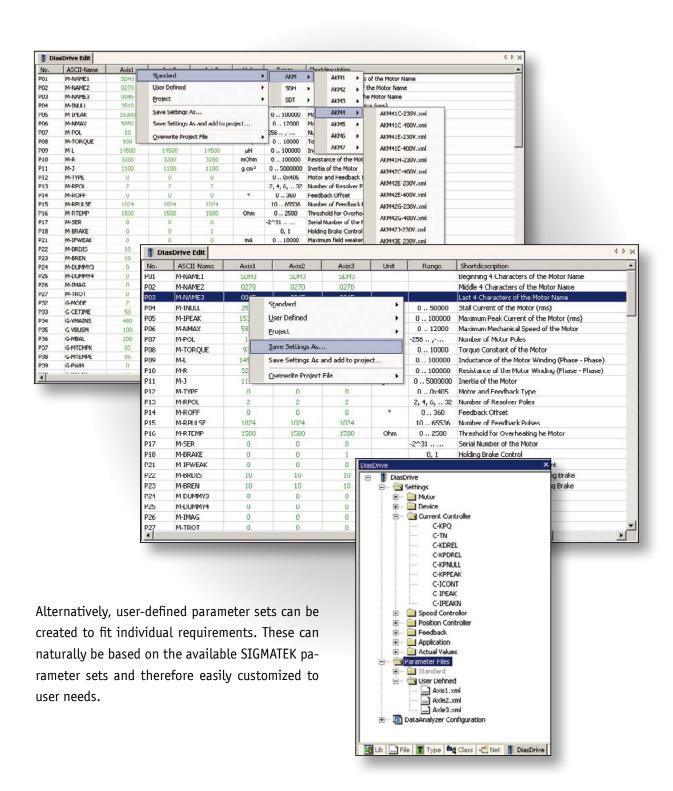

Simple integration of drive technology with

LASAL and LASAL MOTION

Integration in LASAL

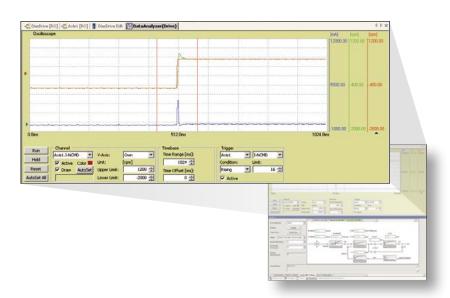
LASAL is the all-in-one engineering tool for SIGMATEK controls and makes a significant contribution to the fast and easy integration of drive technology into the control system. The initial

start-up and parameterization for the DIAS Drives is completely integrated into LASAL; no additional software is required.

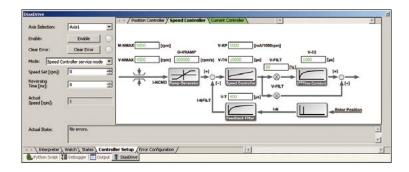


Clear, structured display of the amplifier data.

Parameter sets available for all SIGMATEK motors

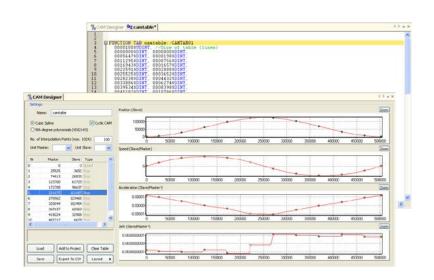

Parameter sets for all SIGMATEK motors are already available. The user only has to adjust the system-specific data and does not have to worry about the motor parameters. All the parameters can be

stored in the control, which guarantees that the drive always has the correct data. Exchanging a drive is therefore simple and can be done without a software tool.



Internal data analyzer

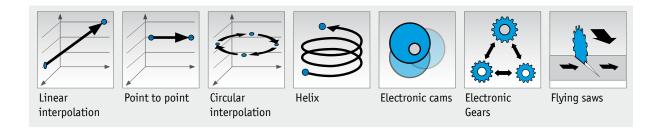
The DIAS Drives have an internal data analyzer that can record data with a scan rate of 62.5 µs. This data is recorded in the converter in real time and displayed with the software tool. Optimizing the controller and displaying the data analyzer can be done in the same screen view.


Graphic representation of the controller start-up

Current, rotation speed and position control are graphically displayed in the software, which ensures a clear overview at any time. All respective control parameters can be seen at a glance and set individually.

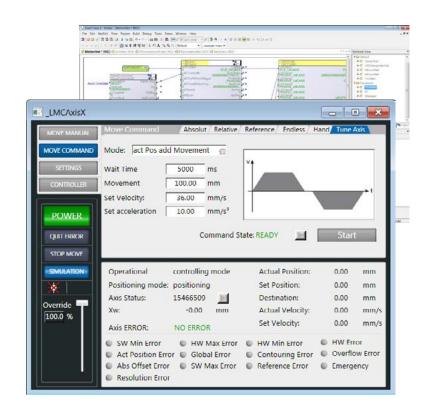
CAM Designer: Electronic cam coupling

With the CAM Designer, electronic cam couplings can be comfortably calculated and displayed. For the calculations, interpolation points are defined. Based on these, the position, speed, acceleration and jerk curves can be displayed. The selection of different interpolation types allows the perfect adaptation to the respective application.


LASAL MOTION

Flexible motion design

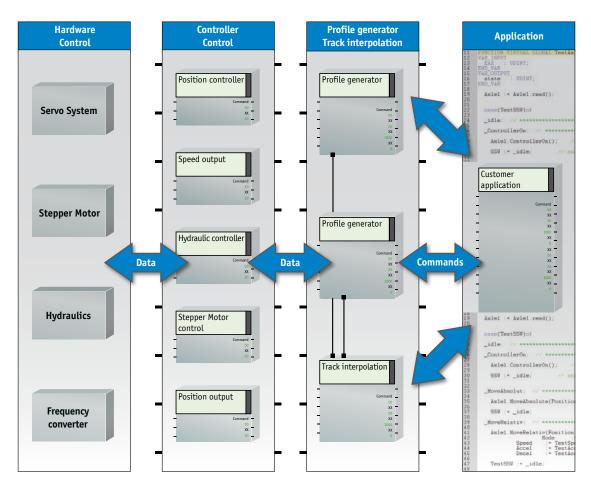
The LASAL MOTION package simplifies all drive technology tasks. Complex axis control tasks and regulation can be implemented comfortably.


The user is provided with a large drive library: Functions such as absolute, relative and endless positioning, CNC functions as well as coordinated movements and several reference types are standard features. In addition, a selection of Motion

Control and technology modules is also available. Examples are coordinated movements such as linear interpolation with up to 6 axes, circular interpolation, electronic cams, flying saws or electronic cam switches. These serve to further reduce programming and testing.

Motion Diagnostic View

The initial start-up and diagnosis of drive components are significantly reduced with the Motion Diagnostic View: Axes can be comfortably parameterized and started as well as commands sent quickly – even troubleshooting is simplified. The graphic representation provides additional comfort and clarity.



Modular construction of the LASAL MOTION software

Object oriented engineering with LASAL provides the user with the highest modularity. The Motion Control elements can also be combined as desired, whereby the implementation of various technical requirements for any application can be easily realized.

The modular construction of the software allows hardware-independent motion control. For the customer application, it is therefore irrelevant whether a hydraulic axis, servo motor or similar is operated. The instruction call is always the same.

During development of LASAL MOTION, a great deal of attention was given to ease of use and efficient axis commands. Several axes can therefore be synchronized with just one command call. Synchronization can be achieved through speed, position, position offset, with gear transmission or virtual axes.

The motion control components can be combined as desired. The user is therefore able to flexibly apply application-specific requirements. The motion control is thereby independent from the hardware used.

Motion Control System

Highlights Compact

Universal and fully integrated

Everything from one source: Control, HMI, drives, motors, gears and software all come from SIGMATEK. Integrated motion control simplifies engineering and reduces technical, training and maintenance costs.

Economic and flexible

The drive concentrates on its essential tasks, while the control assumes the application tasks. Doubled functions and expensive electronics in the drive are eliminated. The most varying motors can be operated. The parameters are stored in the PLC. The converter can therefore be simply exchanged.

Comfortable:

LASAL MOTION provides an extensive library with preprogrammed motion control and technology modules. Engineering is simplified through efficient tools such as the real-time Data Analyzer, real-time trend recording, CAM Designer and Motion Diagnostic View.

■ Future-proof with real-time Ethernet

The use of the real-time Ethernet bus VARAN as the communication protocol allows a modern control structure and guarantees the highest reaction speeds.

SIGMATEKInternational

A

Austria - Corporate Headquarters

SIGMATEK GmbH & Co KG

5112 Lamprechtshausen · Sigmatekstrasse 1 Tel. +43/62 74/43 21-0 · Fax +43/62 74/43 21-18 www.sigmatek-automation.com · office@sigmatek.at

Germany

SIGMATEK GMBH 76829 Landau · Marie-Curie-Strasse 9

Tel. +49/63 41/94 21-0 · Fax +49/63 41/94 21-21 www.sigmatek-automation.com · office@sigmatek.de

Switzerland

SIGMATEK Schweiz AG

8308 Illnau-Effretikon · Schmittestrasse 9
Tel. +41/52/354 50 50 · Fax +41/52/354 50 51
www.sigmatek-automation.ch · office@sigmatek.ch

Belgium

Sigma Control B.V.

2994 LB Barendrecht · Zwolseweg 43 a/b

Tel. +32/329/770 07

www.sigmacontrol.eu · office@sigmacontrol.eu

China

Shanghai Dimension, Automatic Control System Solution Co., Ltd 200032 Shanghai · Room 806, Building 1, No. 3000, Long Dong Road Tel. +86/21/68 79 46 80 · Fax +86/21/68 79 47 10 www.dmxtech.com · buyer@dmxtech.com

Denmark

SH Automation AS 5700 Svendborg · Grønnemosevej 34

Tel. +45/6221/8120

www.sh-automation.dk · info@sh-automation.dk

Finland

SARLIN Oy Ab

01610 Vantaa · Kaivokselantie 3-5

Tel. +35/81 05/50 42 33 · Fax +35/81 05/50 42 01

www.sarlin.com \cdot info@sarlin.com

France

TSTT

31830 Plaisance du Touch \cdot 7 rue André-Marie AMPERE Tel. +33/561/30 69 00 \cdot Fax +33/561/16 50 63

www.isit.fr · contact@isit.fr

India

LTM Business Unit

Chennai 600 089 · Mount Poonamallee Road, Manapakkam Tel. +91/44/22 49 19 32 · Fax +91/44/22 49 40 75

www.ltmindia.com · el@ltmindia.com

Italy

SIGMA MOTION SRL

36075 Montecchio Maggiore (VI) · Viale Milano, 42 Tel. +39/04 44/60 75 75 · +39/04 44/49 58 33

www.sigmamotion.it · info@sigmamotion.it

Great Britain

SIGMATEK Automation UK Limited

Nottingham, NG7 2RF · Nottingham Science Park · 10 Edison Village Tel. +44/115/922 24 33 · Fax +44/115/922 49 91

www.sigmatek-automation.co.uk office@sigmatek-automation.co.uk

USA

SIGMATEK U.S. Automation, Inc.

44133 North Royalton, Ohio · 10147 Royalton Rd., Suite N. Tel. +1/440/582 1266 · Fax +1/440/582 1476

www.sigmatek-automation.us · office@sigmatek.us

China

SIGMATEK Automation CO., Ltd

315040 Ningbo · Room 504, Building A, No. 555, Jingjia Road Tel. +86/574/87 75 30 85 · Fax +86/574/87 75 30 65

www.sigmatek-automation.cn · office@sigmatek-automation.cn

Netherlands

SigmaControl B.V.

2994 LB Barendrecht · Zwolseweg 43 a/b

Tel. +31/180/69 57 77

www.sigmacontrol.eu · office@sigmacontrol.eu

Portugal

Plasdan Automation & Add-On Systems 2430-379 Marinha Grande · Rua de Moçambique No. 29

Tel. +351/244/572 110 · Fax +351/244/572 112

www.plasdan.pt · info@plasdan.pt

Serbia .

Rovex Inzenjering d.o.o.

11070 Belgrad · Bulevar Mihaila Pupina 10d/VP62

Tel. +381/11/13 79 34 · Fax +381/11/13 79 34

www.rovex.rs · romeov@ptt.rs

Spain

Brotomatic S.L.

01010 Vitoria-Gasteiz (Álava)

c/ San Miguel de Acha 2 - pabellon 3

Tel. +34/945/24 94 11 · Fax +34/945/22 78 32

www.brotomatic.es · broto@brotomatic.es

Sweden

SIGBI Automation AB

254 64 Helsingborg · Pinnmogatan 1 Tel. +46/42/654 00 · Fax +46/42/654 70

1et. +40/42/054 00 · rax +40/42/054 /

 $www.sigmatek.se ~\cdot~ info@sigmatek.se \\$

C Turkey

DEDEM Elektrik Taah. Otomasyon San. Tic. Ltd. Şti.

35477 Tekeli-Menderes · 10023 Sokak No: 5

Tel. +90/232/472 18 48 · Fax +90/232/472 17 03

www.dedemotomasyon.com · sigmatek@dedemotomasyon.com